Absen Global / English
Asia-Pacific
中国 / 简体中文
日本 / Japanese
Africa / Fran?ais
Europe
Europe Office
Website/English
Deutsch / German
Fran?ais / French
русский / Russian
Espa?ol / Spanish
Latin America
Espa?ol / Mexico
Português / Brasil
North America/English

如何提高白光LED使用寿命(二)



有关覆芯片化封装方式,由于发光层贴近封装端极易排放热量,加上发光层的光线发射到外部时无电极遮蔽的困扰,所以美国Lumileds企业与日本丰田合作已经正式采用覆芯片化封装方式,芯片表面加工可以防止光线从芯片内部朝芯片外部发射时在界面处发生反射,若在光线取出部位的蓝宝石基板上设置凹凸状结构,芯片外部的取光率可以提高30%左右。经过改良的大型LED芯片封装实体可以使芯片侧面射出的光线朝封装上方的反射板行进,高效率取出芯片内部光线的封装大小是7mm×7mm左右。大型LED的最后封装方式如图5所示。

 

小型LED芯片的发光效率的提升似乎比大型LED芯片模块更有效。例如日本CITIZEN企业组合8个小型LED芯片,达到60lm/W的高发光效率。若使用日亚企业制作的0.3mm×0.3mm 小型LED芯片,一个封装模块最多使用12个这样的芯片,各LED芯片采用传统金线粘合封装方式,施加功率是2W左右。

 

对于白光LED辉度与色温不均匀问题,在使用上必须筛选光学特性类似的白光LED。事实上减少白光LED发光特性的不均匀性、使LED芯片发光特性一致化以及实施荧光体材料浓度分布均匀化管理是非常重要的。

 

有关LED芯片的发光特性,各厂商都在非常积极地进行芯片筛选、发光特性的均等化处理等以减少LED发光特性不均匀问题,如松下电器企业已通过芯片的筛选达成特性一致化的目标。该企业利用覆芯片化方式,将64个LED芯片封装在一片基板上,最后再分别覆盖荧光体。在加工时LED芯片先封装在次基板测试发光特性,接着将发光特性一致的芯片移植封装在主基板上。8个LED芯片封装在一片基板上,即使LED芯片的发光特性不均匀,8个LED芯片合计的发光特性在封装之间的不均匀性会变得非常小。利用多个小型LED芯片的组合提高发光波长均匀性的效果如图6所示。

 

白光LED通常是用内含荧光体材料的密封树脂直接包覆LED芯片,此时密封树脂中荧光体材料的浓度可能出现偏差,最后造成白光LED的色温分布不均匀。因此,可将含荧光体材料的树脂薄片与LED芯片结合,由于薄片厚度与荧光体材料的浓度经过严格的管理,所以白光LED的色温分布不均程度比传统方式减少了 4/5。业界认为使用荧光体薄片方式,配合LED芯片的发光特性,改变荧光体的浓度与薄片的厚度,就可以使白光LED的色温变化控制在预期范围内。

 

虽然说随着白光LED发光效率的逐步提高,将白光LED应用在照明领域的可能性也越来越大,但是很明显地,单只白光LED的光通量均偏低,因此以目前的封装形式是不太可能以单只白光LED来达到照明所需要的流明数。针对这人问题,目前主要的解决方法大致上可分为两类:一类是较传统地将多只LED组成光源模块来使用,而其中每只白光LED所需要的驱动电源与一般使用的相同(为20~30mA);另一类方法是使用较大面积的芯片,此时不再使用传统的0.3mm2大小的芯片,而采用0.6~1mm2大小的芯片,并使用高驱动电流来驱动这样的发光组件(一般为150~350mA,目前最高达到500mA以上)。但无论是使用何种方法,都会因为必须在极小的LED封装中处理极高的热量,若组件无法散去这些热量,除了各种封装材料会由于彼此间膨胀系数的不同而有产品可靠性的问题,芯片的发光效率更会随着温度的上升而有明显地下降,并造成使用寿命明显地缩短。因此,如何散去组件中的热量,成为目前白光LED封装技术的重要课题。

 

对于白光LED而言,最重要的是输出的光通量及光色,所以白光LED的一端必定不能遮光,而需使用高透明效果的环氧树脂材料包覆。然而目前的环氧树脂几乎都是不导热材料,因此对于目前的白光LED封装技术而言,主要是利用其白光LED芯片下方的金属脚座散去组件所发出的热量。就目前的趋势看来,金属脚座材料主要是以高热传导系数的材料为主而组成的,如铝、铜甚至陶瓷材料等,但这些材料与芯片间的热膨胀系数差异甚大,若将其直接接触,很可能因为在温度升高时材料间产生应力而造成可靠性问题,所以一般都会在材料间加上具有适当传导系数及膨胀系数的中间材料作为间隔。松下电器将企业多只白光LED制成在金属材料与金属系复合材料所制成的多层基板模块上以形成光源模块,利用光源基板的高导热效果,使光源的输出在长时间使用时仍能维持稳定。Lumileds生产的白光LED基板所使用的材料为具有高传导系数的铜材,再将其连接至特制的金属电路板,就可以兼顾电路导通及增加热传导效果。

 

大功率白光LED产品的芯片制造技术、封装技术似乎已经成为高亮度白光LED的主流技术,然而与大芯片相关的制造技术及封装技术不只是将芯片面积做大,若希翼将白光LED应用于高亮度照明领域,相关技术仍有待进一步研究。

 

白光LED应用于一般照明领域还有诸多问题需要解决,首先是白光LED的效率提升,例如GaInN系的绿光、蓝光以及近紫外光LED的效率仍有很大的开发裕度。此外,综合能源效率的内部量子效率的提升是最重要的项目,内部量子效率由活性层的非发光再结合百分比与发光再结合百分比所决定,因此可以把焦点锁定在非发光再结合这部分,并设法降低结晶缺陷。而减少紫外光LED的转位密度确实可以明显提高内部量子效率,未来必须针对紫外光LED进一步降低它的转位密度。不过这项对策对绿光、蓝光LED并没有明显的影响。

 

绿光与蓝光LED在低电流密度(约1A/cm2)时具有最大的量子效率,在高电流密度时量子效率反而会下降,如图7所示。从成本观点考虑时则希翼LED能够以高电流密度来驱动,同时尽可能增加组件的输出功率,因此早日解开绿光与蓝光LED高电流密度时量子效率下降的机理与原因,不单是材料物理特性探索上的需要,这项研究对于未来应用也是具有关键性的角色。目前的研究显示紫光LED(波长为382nm)即使施加高电流密度(50A/cm2),量子效率也不会下降。

 

传统的白光LED都是将边长为200~350μm的正方形芯片封装成圆头柱外形,之后为了获得照明所需要的光束,再将已封装的多个白光LED组件排列成矩阵状。单纯以高输出功率为目的而特别开发出的面积比以往芯片大6~10倍,外形尺寸高达500μm~1mm的白光LED,虽然封装后可获得数百毫瓦(数十流明)的输出功率,但是加大芯片的外形尺寸,反而使白光LED内部的光吸取比率增加、外部取光率降低。就以AlGaInP LED为例,芯片的外形尺寸从0.22mm×0.22mm加大为0.50mm×0.50mm后,外部取光率反而降低20%左右。如果改用TIP结构,内部多重反射的结果使得内部光吸取率降低,外部取光率则明显提高。GaInN LED 也有相同的效果。如何提高LED芯片的外部取光率是LED应用于一般照明领域的关键。此外,高的热阻抗(150~200K/W)对高亮度输出相当不利。 LED内部量子效率对活性层温度的依存度极大,因此除了低热阻抗封装技术之外,利用散热片排除活性层的热流成为今后研发的热点。

 

银河误乐城LED显示屏,户内外两用,弧型拼接,快速安装!租赁、演义、展会首选的租赁屏!LED显示屏可任意弧度弯曲,满足弧形、异形等舞台创意需求。银河误乐城LED显示屏,连续10年出口第一,世界首选银河误乐城。

 

常识来源于互联网,如有版权问题,请联系修改。

Back
Top
XML 地图 | Sitemap 地图
热门关键词:
必发网站| 华夏现金增利货币e| bifa365bifa必发| 亚博娱乐官方网站| k3打鱼游戏下载| 正规网赌| 10元可提现的跑得快| 百家乐sxcbd| 能上下分的星力捕鱼游戏| 棋牌娱乐app下载| 88必发娱乐平台| 龙8国际娱乐官方网站| 赌钱麻将可提现版| 最新送分棋牌电玩城| 打鱼赢现金的游戏| 10元可提现的现金棋牌| 捕鱼达人app| ca335亚洲城| 赚钱的捕鱼游戏平台| 网络炸金花| 威尼斯赌场娱乐官网平台| 龙8pt| 扎金花闷牌规律| 澳门网上投注| 跑得快棋牌可以提现| 678娱乐城官方网| 真人斗地主赌钱平台| 摇钱树捕鱼平台| 斗地主达人在线玩| 亚洲城ca88手机登录地址|